Monday, May 16, 2011

Definition Pesticide | Uses Pesticide


    Pesticides are substances or mixture of substances intended for preventing, destroying, repelling or mitigating any pest. A pesticide may be a chemical substance, biological agent (such as a virus or bacterium), antimicrobial, disinfectant or device used against any pest. Pests include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, spread disease or are a vector for disease or cause a nuisance. Although there are benefits to the use of pesticides, there are also drawbacks, such as potential toxicity to humans and other animals. According to the Stockholm Convention on Persistent Organic Pollutants, 10 of the 12 most dangerous and persistent organic chemicals are pesticides.

    Definition

    Pesticides can be classified by target organism, chemical structure, and physical state. Pesticides can also be classed as inorganic, synthetic, or biologicals (biopesticides), although the distinction can sometimes blur. Biopesticides include microbial pesticides and biochemical pesticides. Plant-derived pesticides, or "botanicals", have been developing quickly. These include the pyrethroids, rotenoids, nicotinoids, and a fourth group that includes strychnine and scilliroside.

    Many pesticides can be grouped into chemical families. Prominent insecticide families include organochlorines, organophosphates, and carbamates. Organochlorine hydrocarbons (e.g. DDT) could be separated into dichlorodiphenylethanes, cyclodiene compounds, and other related compounds. They operate by disrupting the sodium/potassium balance of the nerve fiber, forcing the nerve to transmit continuously. Their toxicities vary greatly, but they have been phased out because of their persistence and potential to bioaccumulate. Organophosphate and carbamates largely replaced organochlorines. Both operate through inhibiting the enzyme acetylcholinesterase, allowing acetylcholine to transfer nerve impulses indefinitely and causing a variety of symptoms such as weakness or paralysis. Organophosphates are quite toxic to vertebrates, and have in some cases been replaced by less toxic carbamates. Thiocarbamate and dithiocarbamates are subclasses of carbamates. Prominent families of herbicides include pheoxy and benzoic acid herbicides (e.g. 2,4-D), triazines (e.g. atrazine), ureas (e.g. diuron), and Chloroacetanilides (e.g. alachlor). Phenoxy compounds tend to selectively kill broadleaved weeds rather than grasses. The phenoxy and benzoic acid herbicides function similar to plant growth hormones, and grow cells without normal cell division, crushing the plants nutrient transport system. Triazines interfere with photsynthesis. Many commonly used pesticides are not included in these families, including glyphosate.

    Pesticides can be classified based upon their biological mechanism function or application method. Most pesticides work by poisoning pests. A systemic pesticide moves inside a plant following absorption by the plant. With insecticides and most fungicides, this movement is usually upward (through the xylem) and outward. Increased efficiency may be a result. Systemic insecticides, which poison pollen and nectar in the flowers, may kill bees and other needed pollinators.

    In 2009, the development of a new class of fungicides called paldoxins was announced. These work by taking advantage of natural defense chemicals released by plants called phytoalexins, which fungi then detoxify using enzymes. The paldoxins inhibit the fungi's detoxification enzymes. They are believed to be safer and greener.

    Uses Pesticide

    Pesticides are used to control organisms considered harmful. For example, they are used to kill mosquitoes that can transmit potentially deadly diseases like west nile virus, yellow fever, and malaria. They can also kill bees, wasps or ants that can cause allergic reactions. Insecticides can protect animals from illnesses that can be caused by parasites such as fleas. Pesticides can prevent sickness in humans that could be caused by mouldy food or diseased produce. Herbicides can be used to clear roadside weeds, trees and brush. They can also kill invasive weeds that may cause environmental damage. Herbicides are commonly applied in ponds and lakes to control algae and plants such as water grasses that can interfere with activities like swimming and fishing and cause the water to look or smell unpleasant. Uncontrolled pests such as termites and mould can damage structures such as houses. Pesticides are used in grocery stores and food storage facilities to manage rodents and insects that infest food such as grain. Each use of a pesticide carries some associated risk. Proper pesticide use decreases these associated risks to a level deemed acceptable by pesticide regulatory agencies such as the United States Environmental Protection Agency (EPA) and the Pest Management Regulatory Agency (PMRA) of Canada.

    Pesticides can save farmers' money by preventing crop losses to insects and other pests; in the U.S., farmers get an estimated fourfold return on money they spend on pesticides. One study found that not using pesticides reduced crop yields by about 10%. Another study, conducted in 1999, found that a ban on pesticides in the United States may result in a rise of food prices, loss of jobs, and an increase in world hunger.

    DDT, sprayed on the walls of houses, is an organochloride that has been used to fight malaria since the 1950s. Recent policy statements by the World Health Organization have given stronger support to this approach. Dr. Arata Kochi, WHO's malaria chief, said, "One of the best tools we have against malaria is indoor residual house spraying. Of the dozen insecticides WHO has approved as safe for house spraying, the most effective is DDT." However, since then, an October 2007 study has linked breast cancer from exposure to DDT prior to puberty. Poisoning may also occur due to use of DDT and other chlorinated hydrocarbons by entering the human food chain when animal tissues are affected. Symptoms include nervous excitement, tremors, convulsions or death. Scientists estimate that DDT and other chemicals in the organophosphate class of pesticides have saved 7 million human lives since 1945 by preventing the transmission of diseases such as malaria, bubonic plague, sleeping sickness, and typhus. However, DDT use is not always effective, as resistance to DDT was identified in Africa as early as 1955, and by 1972 nineteen species of mosquito worldwide were resistant to DDT. A study for the World Health Organization in 2000 from Vietnam established that non-DDT malaria controls were significantly more effective than DDT use. The ecological effect of DDT on organisms is an example of bioaccumulation.
    Source URL: https://newsotokan.blogspot.com/2011/05/definition-pesticide-uses-pesticide.html
    Visit Sotokan for Daily Updated Hairstyles Collection

No comments:

Post a Comment

Popular Posts

My Blog List

Blog Archive