- Easy-to-access course materials. Instructors can post the course material or important information on a course website, which means students can study at a time and location they prefer and can obtain the study material very quickly
- Student motivation. Computer-based instruction can give instant feedback to students and explain correct answers. Moreover, a computer is patient and non-judgmental, which can give the student motivation to continue learning. According to James Kulik, who studies the effectiveness of computers used for instruction, students usually learn more in less time when receiving computer-based instruction and they like classes more and develop more positive attitudes toward computers in computer-based classes. The American educator, Cassandra B. Whyte, researched and reported about the importance of locus of control and successful academic performance and by the late 1980s, she wrote of how important computer usage and information technology would become in the higher education experience of the future.
- Wide participation. Learning material can be used for long distance learning and are accessible to a wider audience
- Improved student writing. It is convenient for students to edit their written work on word processors, which can, in turn, improve the quality of their writing. According to some studies, the students are better at critiquing and editing written work that is exchanged over a computer network with students they know
- Subjects made easier to learn. Many different types of educational software are designed and developed to help children or teenagers to learn specific subjects. Examples include pre-school software, computer simulators, and graphics software
- A structure that is more amenable to measurement and improvement of outcomes. With proper structuring it can become easier to monitor and maintain student work while also quickly gauging modifications to the instruction necessary to enhance student learning.
- Differentiated Instruction. Educational technology provides the means to focus on active student participation and to present differentiated questioning strategies. It broadens individualized instruction and promotes the development of personalized learning plans. Students are encouraged to use multimedia components and to incorporate the knowledge they gained in creative ways.
- Computer in the classroom: Having a computer in the classroom is an asset to any teacher. With a computer in the classroom, teachers are able to demonstrate a new lesson, present new material, illustrate how to use new programs, and show new websites.
- Class website: An easy way to display your student's work is to create a web page designed for your class. Once a web page is designed, teachers can post homework assignments, student work, famous quotes, trivia games, and so much more. In today's society, children know how to use the computer and navigate their way through a website, so why not give them one where they can be a published author. Just be careful as most districts maintain strong policies to manage official websites for a school or classroom. Also, most school districts provide teacher webpages that can easily be viewed through the school district's website.
- Class blogs and wikis: There are a variety of Web 2.0 tools that are currently being implemented in the classroom. Blogs allow for students to maintain a running dialogue, such as a journal,thoughts, ideas, and assignments that also provide for student comment and reflection. Wikis are more group focused to allow multiple members of the group to edit a single document and create a truly collaborative and carefully edited finished product.
- Wireless classroom microphones: Noisy classrooms are a daily occurrence, and with the help of microphones, students are able to hear their teachers more clearly. Children learn better when they hear the teacher clearly. The benefit for teachers is that they no longer lose their voices at the end of the day.
- Mobile devices: Mobile devices such as clickers or smartphone can be used to enhance the experience in the classroom by providing the possibility for professors to get feedback. See also MLearning.
- Interactive Whiteboards: An interactive whiteboard that provides touch control of computer applications. These enhance the experience in the classroom by showing anything that can be on a computer screen. This not only aids in visual learning, but it is interactive so the students can draw, write, or manipulate images on the interactive whiteboard.
- Online media: Streamed video websites can be utilized to enhance a classroom lesson (e.g. United Streaming, Teacher Tube, etc.)
- Digital Games: The field of educational games and serious games has been growing significantly over the last few years. The digital games are being provided as tools for the classroom and have a lot of positive feedback including higher motivation for students.
- Podcasts: Podcasting is a relatively new invention that allows anybody to publish files to the Internet where individuals can subscribe and receive new files from people by a subscription. The primary benefit of podcasting for educators is quite simple. It enables teachers to reach students through a medium that is both "cool" and a part of their daily lives. For a technology that only requires a computer, microphone and internet connection, podcasting has the capacity of advancing a student’s education beyond the classroom. When students listen to the podcasts of other students as well as their own, they can quickly demonstrate their capacities to identify and define "quality." This can be a great tool for learning and developing literacy inside and outside the classroom. Podcasting can help sharpen students’ vocabulary, writing, editing, public speaking, and presentation skills. Students will also learn skills that will be valuable in the working world, such as communication, time management, and problem-solving.
Educational technology is the study and ethical practice of facilitating learning and improving performance by creating, using and managing appropriate technological processes and resources." The term educational technology is often associated with, and encompasses, instructional theory and learning theory. While instructional technology covers the processes and systems of learning and instruction, educational technology includes other systems used in the process of developing human capability. Educational Technology includes, but is not limited to, software, hardware, as well as Internet applications and activities. But there is still debate on what these terms mean.
Educational technology is most simply and comfortably defined as an array of tools that might prove helpful in advancing student learning. Educational Technology relies on a broad definition of the word "technology". Technology can refer to material objects of use to humanity, such as machines or hardware, but it can also encompass broader themes, including systems, methods of organization, and techniques. Some modern tools include but are not limited to overhead projectors, laptop computers, and calculators. Newer tools such as "smartphones" and games (both online and offline) are beginning to draw serious attention for their learning potential.
Those who employ educational technologies to explore ideas and communicate meaning are learners or teachers.
Consider the Handbook of Human Performance Technology. The word technology for the sister fields of Educational and Human Performance Technology means "applied science." In other words, any valid and reliable process or procedure that is derived from basic research using the "scientific method" is considered a "technology." Educational or Human Performance Technology may be based purely on algorithmic or heuristic processes, but neither necessarily implies physical technology. The word technology comes from the Greek "techne" which means craft or art. Another word, "technique," with the same origin, also may be used when considering the field Educational Technology. So Educational Technology may be extended to include the techniques of the educator.
A classic example of an Educational Psychology text is Bloom's 1956 book, Taxonomy of Educational Objectives. Bloom's Taxonomy is helpful when designing learning activities to keep in mind what is expected of—and what are the learning goals for—learners. However, Bloom's work does not explicitly deal with educational technology per se and is more concerned with pedagogical strategies.
According to some, an Educational Technologist is someone who transforms basic educational and psychological research into an evidence-based applied science (or a technology) of learning or instruction. Educational Technologists typically have a graduate degree (Master's, Doctorate, Ph.D., or D.Phil.) in a field related to educational psychology, educational media, experimental psychology, cognitive psychology or, more purely, in the fields of Educational, Instructional or Human Performance Technology or Instructional (Systems) Design. But few of those listed below as theorists would ever use the term "educational technologist" as a term to describe themselves, preferring terms such as "educator". The transformation of educational technology from a cottage industry to a profession is discussed by Shurville, Browne, and Whitaker.
Educational technology in a way could be traced back to the emergence of very early tools, e.g., paintings on cave walls. But usually its history starts with educational film (1900s) or Sidney Pressey's mechanical teaching machines in the 1920s.
The first large scale usage of new technologies can be traced to US WWII training of soldiers through training films and other mediated materials. Today, presentation-based technology, based on the idea that people can learn through aural and visual reception, exists in many forms, e.g., streaming audio and video, or PowerPoint presentations with voice-over. Another interesting invention of the 1940s was hypertext, i.e., V. Bush's memex.
The 1950s led to two major, still popular designs. Skinner's work led to "programmed instruction" focusing on the formulation of behavioral objectives, breaking instructional content into small units and rewarding correct responses early and often. Advocating a mastery approach to learning based on his taxonomy of intellectual behaviors, Bloom endorsed instructional techniques that varied both instruction and time according to learner requirements. Models based on these designs were usually referred to as computer-based training" (CBT), Computer-aided instruction or computer-assisted instruction (CAI) in the 1970s through the 1990s. In a more simplified form they correspond to today's "e-contents" that often form the core of "e-learning" set-ups, sometimes also referred to as web-based training (WBT) or e-instruction. The course designer divides learning contents into smaller chunks of text augmented with graphics and multimedia presentation. Frequent Multiple Choice questions with immediate feedback are added for self-assessment and guidance. Such e-contents can rely on standards defined by IMS, ADL/Scorm and IEEE.
The 1980s and 1990s produced a variety of schools that can be put under the umbrella of the label Computer-based learning (CBL). Frequently based on constructivist and cognitivist learning theories, these environments focused on teaching both abstract and domain-specific problem solving. Preferred technologies were micro-worlds (computer environments where learners could explore and build), simulations (computer environments where learners can play with parameters of dynamic systems) and hypertext.
Digitized communication and networking in education started in the mid 80s and became popular by the mid-90's, in particular through the World-Wide Web (WWW), eMail and Forums. There is a difference between two major forms of online learning. The earlier type, based on either Computer Based Training (CBT) or Computer-based learning (CBL), focused on the interaction between the student and computer drills plus tutorials on one hand or micro-worlds and simulations on the other. Both can be delivered today over the WWW. Today, the prevailing paradigm in the regular school system is Computer-mediated communication (CMC), where the primary form of interaction is between students and instructors, mediated by the computer. CBT/CBL usually means individualized (self-study) learning, while CMC involves teacher/tutor facilitation and requires scenarization of flexible learning activities. In addition, modern ICT provides education with tools for sustaining learning communities and associated knowledge management tasks. It also provides tools for student and curriculum management.
In addition to classroom enhancement, learning technologies also play a major role in full-time distance teaching. While most quality offers still rely on paper, videos and occasional CBT/CBL materials, there is increased use of e-tutoring through forums, instant messaging, video-conferencing etc. Courses addressed to smaller groups frequently use blended or hybrid designs that mix presence courses (usually in the beginning and at the end of a module) with distance activities and use various pedagogical styles (e.g., drill & practise, exercises, projects, etc.).
The 2000s emergence of multiple mobile and ubiquitous technologies gave a new impulse to situated learning theories favoring learning-in-context scenarios. Some literature uses the concept of integrated learning to describe blended learning scenarios that integrate both school and authentic (e.g., workplace) settings.
Educational technology is intended to improve education over what it would be without technology. Some of the claimed benefits are listed below:
There are various types of technologies currently used in traditional classrooms. Among these are:
There are many other tools being utilized depending on the local school board and funds available. These may include: digital cameras, video cameras, interactive whiteboard tools, document cameras, or LCD projectors.
Visit Sotokan for Daily Updated Hairstyles Collection
No comments:
Post a Comment